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Abstract. We study the dynamics of an impurity spin coupled to a spin-boson dissipative 
system. We calculate the transverse correlation function of the impurity spin and compare 
the result with that obtained from an equivalent stochasticmodel. Aphenomendo@calrate 
parameter in the stochastic model is represented in terms of microscopically obtained 
quantities. We a1soCalcUlate theNMRlineshapes for various temperatureswhich are relevant 
in the context of a particular physical realization of the model. Motional narrowingof lines 
isobserved at high temperatures. 

1. Introduction 

The topic of the dynamics of an impurity spin coupled to conduction electrons in metals 
is important incontemporary condensed matter physics. Starting with the problem of a 
magnetic impurity in a metal giving rise to the Kondo effect, recent years have witnessed 
much effort towards the understanding of the motion of defects, such as positive muons 
or hydrogen in metals. These effects are usually significant at very low temperatures 
when the phonon contributions are suppressed. For a comprehensive review of the 
subject of defects in metals we refer the reader to a recent article by Kondo [l]. 

A defect tunnelling between two trap sites in a metal is an example of a quantum 
two-state system in contact with a thermal bath. Although the latter is made up of 
fermions, the low-temperature behaviour is dominated by low-lying excitations off the 
Fermi surface which are approximately described by bosons. This has motivated the 
introduction of the spin-bosor, Hamiltonian that has been the focus of much attention 
in recent years [2]. The Hamiltonian, written as 

X = -IhAoo, + u2 G,(bj + b,?) + hwiblb j  (1.1) 
i i 

accompanied by the spectral function 

provide a mapping of the two-state system in a fermion bath to a two-state system in 
contact with a bosonic bath. In the above equations the U are Pauli spin operators 
representing the two-state system, A, is the tunnelling frequency, b, and bf are the 
annihilation and creation operators, respectively, for the jth boson of frequency wi and 
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GI is the coupling constant. The assumed form of the spectral density given by the 
last term in (1.2) describes what is known as ohmic dissipation parametrized by the 
dimensionless constant K and the high-frequency cut-off D. 

The object of the present investigation is not tunnelling states in metals but the 
spin dynamics of an impurity spin [coupled to a spin-boson Hamiltonian. What we study 
is therefore a variant of the problem posed in (1.2) in that the U now represent a real 
spin-: entity which in turn interacts with another spin 1. The chosen Hamiltonian is 
written as 

T Qureshi and S Dattagiipta 

where a is a coupling parameter and the last term is a counter term that disappears upon 
a unitary transformation on X (see below). We are interested in what should be the 
influence of the dissipative dynamics of the U on the spin dynamics of I .  In particular, 
we are interested in calculating the transverse correlation function 

cm (0 = U m ~ X  (0) (1.4) 

where (. . .) denotes statistical average. 
A motivatingfactor behind formulating the Hamiltonian in (1.3) is in fact the original 

Kondo problem in the context of which U represents the electronic spin of the impurity 
atom and I represents the nuclear spin of the impurity atom. The first term in (1.3) may 
therefore be viewed as decribing a uniaxial hyperfine interaction with coupling constant 
a whereas the spin-boson part is taken to model the interaction between the localized 
spin U and the conduction electrons, as is appropriate for a highly anisotropic Kondo 
system [2]. AquantitysuchasC,(r) would berelevant ininterpreting resonanceexperi- 
ments (e.g. NMR) 131. A related quantity is also useful for analysing hyperfine lineshapes 
as can be measured by the Mossbauer and angular correlation techniques [3]. 

One other motivation for studying (1.3) arises from the interest in examining the 
interplay of quantum and dissipative effects, as in the case of the original spin-boson 
problem. A detailed analysis is also expected to throw light on the underlying basis of 
certain equivalent Hamiltonians which are often introduced from purely stochastic 
considerations. Such considerations are derived from the observation that the Ham- 
iltonian in (1.3). in the interaction picture. may be written as 

%(t) = 4af2u2(f). (1.5) 
Hence, in order to simulate dissipative effects it makes sense to replace X ( t )  by an 
effective stochastic Hamiltonian 

X ( t )  = $aI,fi(t). 
In view of the fact that U, can take values +1 or -1 it is appropriate to regard fi(I) as a 
two-level jump process in which & ( I )  is taken to jump at random between two values + 1 
and -1  141. The underlying stochastic process, assumed to be Markovian, is specified 
completely in terms of the rate A at which the field jumps from + 1 to - 1 and vice versa?. 
The s tochas tic model given by (1.6) allows us to make a rather straightforward calculation 

t The assumption that the rate of jump from + 1 to - 1 is the same as that from - 1 to + 1 breaks down, of 
courre,illhereisary"etry-breakingtransitionin whichoneofthe twostaleso, = ilispreferred[Z]. Such 
a transition, however. does not occur in a fermionic system in which K is restricted to be less lhan or equal to 
one half 151. 



Impurity spin coupled ro spin-boson sysreni 1081 

of C,(t). The resultant expression can then be compared with that obtained from the 
more detailed quantum mechanical analysis of the dynamics of X given in (1.3). Such a 
comparison lends a microscopic meaning to the phenomenological parameter A that 
appears in the stochastic model. The connection between models based on stochastic as 
opposed to dynamic considerations has been the topic of some recent studies of optical 
processes [6] and our work is a further step in this direction. 

The plan of the paper is as follows. In section 2 we set up the method of calculating 
C,(f) basedon theHamiltoniangivenin (1.3). Themethod, whichgoesunderthe name 
of 'relaxation theory', is only briefly sketched here as most of the details have already 
been given in our earlier paper on the structure factor calculation for the spin-boson 
model [7]. As shown in [7], our approach is entirely equivalent to the dilute bounce gas 
approximation within a functional integral formulation of the problem [2,7]. In section 
3 we present the stochastic theory result of Cxx(t) and make a comparison with the result 
derived in section 2. Our principal conclusions are summarized in section 4. 

2. The transverse correlation function 

2.1. The preliminaries 

We have argued earlier [7] that a convenient perturbative treatment of the spin-bath 
coupling(i.e. the second term in (1.3)) ensues upon makinga unitary transformation of 
the Hamiltonian: 

% = SXS" 
where S is a unitary operator defined by 

-Ux G, hWi (b, - b;)),  

We obtain 

2?=$alal,(B+u- + B - u + ) + ~ . h w , b ~ b i  
i 

where U? = U, fc iuy and where 

r 2 x . 3 ( b i - b J ) ) ,  ' nwj 

In terms of % the transverse correlation function in (1.4) may be written as 

where 
C, (f) = Tr[PI, (O)i, (01 

p = exp(-P%)/Tr[exp(-@)] 

i , ( t)  = exp(i2t) I , @ )  exp(-i%). 
and 

We may further write 

where 
f&) = U(t)lx(0) 

U(r) = exp(iit) 
i being the LiouviUian associated with % (the notation used here is the same as in [7]). 
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Makingthe customary factorization approximation the density matrix p can be expressed 
as 

T Qureshi and S Dattagupta 

p = [1/2(21+ l)]pB (2.10) 
where pB is the density matrix for the bath, the Hamiltonian of which is given by the 
second term in (2.3), and I is the value of the spin I .  This approximation is very good if 
a 4 KBTasiso!3enthecaseforthehyperlineinteractionin metals. With thisthe Laplace 
transform of CU(r) is given by 

C d z )  = [1/2(21+ 1)1 TrsUz T r ~ h O ( z ) l  IJ 

U ( z )  = l/(z - i i )  

(2.11) 

(2.12) 

where 

and TI, and TrB represent the traces over the quantum states of the coupled spin system 
(ofland u)and the bath, respectively. Denoting thestatesoflby theindicesm,,andmI 
and those of U by the indices / L  and Y, (2.11) may be re-expressed as 

x Z (m,~,m~~I~rB[pBu(z)IImov',m,~'). 
Y 

In writing (2.13) we have used the fact that XI is diagonal amongst the states of I .  

2.2. Resoluanr expansion 

Our strategy is first to evaluate the trace over the bath states. Formally, 

Tr,[p~&)] E [U(z)laV = 2 h l p ~  Id(nfzIo(z)/fz'n') (2.14) 
"."' 

where In) denotes the occupation number states for the boson operators and Inn) the 
'states' for the corresponding Liouvillian (see [7]). Developing the interaction term, i.e. 
the term associated with the first termin (2.3), asaperturbationandsuitably rearranging 
terms up to the second order, we have 

(2.15) [&)I = 1/{z + [&(z - iLB)4Ll la"}  
where L, is the Liouvillian associated with the interaction Hamiltonian 

2 -  l - i a l , ( B + u -  + B-U,) (2.16) 
and LB is the Liouvillian associated with the bath Hamiltonian 

XB = 2 hw,bT b,. (2.17) 

As we need the matrix elements of [ 0(z)lsv amongst the combined spin states of Iand a 
it isconvenient first totabulate thematrixelementsoftheself-energyin(2.15). Applying 
the properties of the Liouvillian, we find that 

I 

( m ~ l r , m ~ ~ l [ L ~ ( z  - ~ L B ) - ~ L I I ~ ~ I ~ O P ' ,  QY') 
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(2.18) 

where E, is the eigenvalue of the bath Hamiltonian XB. The next step is to plug in the 
explicit form of (cf (2.16)), rewrite the denominators back in the form of integrals 
overt and express the sum over the bath states (ti. n' ,  etc) as correlation functions for 
bathoperators. We find forthematrixof [ L I ( z  - iLB)-'LlIaY,for a f i ~ e d s e t o f m ~ a n d  
m, and within the subspace of U, the elements: 

- h w l %  lmo$n')(ml v'n'l% Im, 4 
z - (i/fi)(En - Ens)  

0 a i m ~ & - + ( z ) + a ~ m j & ~ . ( z )  - a ~ a l m o m l [ 6 ~ ~ ( z ) + & L ~ ( z ) ]  

o -aoalmom, [& t +  ( z ) +  6 ~ +  ( z ) ]  aim;& +-  (2) +aim@ I, (2) 

aimi&-+ (z)+ujmj& I+ ( z )  

-aoaimomi [&+ - ( z )  +& >-  (z)] 

-aaalmomi [&-+ ( z ) +  6 '+ (2)) 

a?,m?,&+- ( z )  +a:m:&;- ( z )  

o 
o 

0 

0 

(2.19) 

where the rows and columns are labelled by + + , - - , + - and - + , respectively, and 

@ - = ( l )  = (1/4fiZ)(B,(0)Br(t)). (2.20) 

! 
Further, all primed quantities are obtained by replacing the argument I by -I, and the 
hat denotes the Laplace transform. It may be stressed that the angular brackets in (2.20) 
denote thermal averages governed by pB and the time development of B,(t) is dictated 
by %e, alone. It may also be noted that in writing the elements in (2.19) we have kept in 
mind the possibility that the hyperfine constant takes two distinct values a. and a,  
dependingon whether thestate ism,orm,. Thisisparticularlyrelevant inanexperiment 
involving the Mossbauer effect wherein the states mo and m l  refer to the ground and 
excited states of the nucleus. On the other hand, in the case of magnetic resonance or 
angular correlation experiments, a. = a,  = a  [3]. 

The matrix (2.19) has to be added to z and then inverted. However, as is evident 
from (2.13), we need to focus only on the upper left block in (2.19). and thus we find 
(displaying only the upper left block) for the matrix of [U(z)lnv 

z + a?,m@+-(z) + a:m:&;-(z) momlaoal[&+(z) + &L+(z)] 
2 2 6 ,  z + aimi&-+(z) + nlml -+(z) 1 

(2.21) 

det(mo,m~) l [  momlaoai[&+-(z)  + &;-(z)] 

where det(m,, m,) is given by 

det(mo,ml) = z2 + z{(aomo)2[&+-(z) + &t(z)] 
+ ( a l m l ) 2 [ & k - ( z )  + &L+(z)]} + (aim; - a:mj) 

x [(aomo)2&+-(z)&+(z) - ( a l m i ) 2 & . : - ( z ) ~ ) 1 + ( ~ ) ] .  (2.22) 
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Using the correlation function for the bath variables within the ohmic dissipation model 
we have shown earlier that [7] 

T Qureshi and S Dattagupta 

& + - ( z )  = &+(z )  = &(z) = F(z) e x p ( i x a  

&:-(z)  = & ! + ( z )  = & ' ( z )  = F(z) exp(-inK) 
(2.23) 

where 

2.3. Result for the correlation function 

It is evident from (2.13) that the quantity of central importance are the matrix elements 
of the averaged time-development operator that may be denoted as 

G,,,(z) = 2 (nzou, m,  v((TrB[PBU(z)]) Imou' ,  m, U'). (2 .25)  
Y Y  

A knowledge of G,,,(z) is adequate for evaluating the lineshapes for different kinds 
of hyperfine spectra [7]. After some algebra we obtain 

G,,,(z) = {z  + F(z)[(aomo - a,m,)' cos(nK) + i(agma - a~mf)sin(nK)]}-' .  
(2.26) 

Specializing here to NMR, and also for simplicity considering the case I = 4, we find that 

C,(r) = l/[z + aZF(z) cos(nK)]. (2.27) 

Equation (2.26) forms the basis for comparison with the stochastic model results given 
next in section 3. 

3. Stochastic theory 

The physical ideas behind thc stochastic considerations have already been expounded 
in section 1. The stochastic Hamiltonian, given in (1.6), affords a drastic simplification 
to the theory in that a quantum many-body problem is replaced by an effective classical 
one in which the field X(r) is viewed as a two-level jump process [3]. The extent to which 
this simplified picture is valid and its limitations are the subject of this section. 

In terms of A. the rate at which the field jumps from + 1 to -1 and vice versa, the 
Laplace transform of the averaged time-development operator is given as [3] 

[O(Z)I*" = Iz + (1/h2)[(al:)z/(z + A)l}F' (3.1) 

where I :  is the Liouvillian associated with f,. Needless to say, [. . .I,, now represents the 
average over the underlying stochastic process in contrast with the previous case in which 
the averaging involves the quantum states of the heat bath. Consequently (cf (2.26)).  

Gmoml(z)  = { z  + ( l / h ' ) [ ( a m  - aImd2/(z  + h)P-'. 

G,,,(r) = [ z  + (a/2h)2/(z +A)]-'. 

(3.2) 
In the NMR case for I = 4, we have 

(3.3) 
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When we contrast (3 .2)  to the result given in (2.26) which is obtained from a more 
detailed analysis, it is evident that the latter is much richer in structure. First of all, the 
relaxation parameters in (2.26) described by the second term inside the braces depend 
strongly on the frequency z. Such non-Markovian features are expected, of course, 
when the heat bath is a quantum system. Second, these parameters depend also on the 
hyperfine constants (ao and a l ) ,  indicating the importance of the ‘feedback’ of the 
subsystem into the heat bath. 

The comparison with the stochastic model is clearer in the case of NMR and also for 
I = 1. From (2.27) and (3 .3)  we see that the term which plays the role of z + h is 
y(K, z )  where 

Making a ‘weak-coupling’ expansion we may write 

y(K,z)=y(O,z)+K[ay(K,z) /aKlj ,~o + .  . .  = z + K [ a y ~ K , r ) / a K l j k = o .  (3.5) 

Thus the ‘relaxation rate’ is described by the second term in (3.5) which is still frequency 
dependent. 

Another special situation which allows for an explicit comparison with the stochastic 
theory results is the ‘motional narrow,ing’ limit in which A is so large that z + h may be 
replaced by A in the second term in (3.3), yielding 

Gmom,(z)  = [ z  + (a/2h)*/A]-’.  (3.6) 
Therefore, in this limit, A turns out to be same as y ( K ,  z = 0) where 

y ( ~ ,  0) = D(hpD/h)2K-1[r(i - K)/r(i - ~ K ) T ( K ) ]  sec(nK). (3.7) 
The motional narrowing limit is relevant when the temperature is high, i.e. pis small so 
that the term zhp in the argument of the gamma functions in (3.4) may be ignored. This 
is also in conformity with the result given in (3.7) which shows that the rate of relaxation 
increases with increasing temperature (for K C 1). However, the significant point is that 
this increase is governed by a ‘power law’ of the form which is entirely a non- 
classical feature. 

4. Coneluding analysis 

We have studied a system of interacting spins coupled to a heat bath, using a fully 
quantum mechanical analysis. The relaxation behaviour of such a system depends on 
the nature of the correlation functions of the bath. Various studies have been made 
earlier on similar systems where the system-heat bath coupling is treated perturbatively 
161. Explicit analysis is possible only in the following two limiting cases. In the fist,  the 
heat bath coupling viewed as noise is assumed to vary so slowly that the system-the 
spin system in the present context-has time to maintain its quantum coherence and to 
evolve quantum mechanically. In the second, the noise is assumed to vary so quickly 
that the quantum coherence is completely lost and the Brownian picture (that obtained 
in the ’motionaly narrowed‘ regime) is what one expects to see. 

For most systems, however, the correlation time of the noise is somewhere between 
the two extremes and this is where an explicit dynamical study of the bath becomes 
important. In our analysis of the model we have probed a wide regime of the noise 
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w 

Figurel.~~Rlineshape basedon (2.27). Forcon- 
venience, we have introduced the dimensionless 
variables r = Zn/ag, wo = hDla and s = hz/a. 
The Laplace transform variables is set equal to 
io + ~/2where~hasbeenfixedat0.5inorderto 
account tor the possible instmmental width. The 
temperature T is fixedat 10andthedimensionles 
cut-off wD at 1cKI. We-plot the dimensionless 
lineshape I(w) = (o/A)C(r): -, K = 0; ---. 
K = 0.05; . , r .  ., K = 0.2. 

w 

Figure 2. NMR lineshape for K = 0.01, wD = 100 
and r = O S  for variousvaluesofthe temperature 
r:-,r = I . - - - , ~  = 15;.....,~ = so. 

correlation time. The two extreme casesare easily recoverable as shown in section 3 and 
also in NMR plots (figure 1). These plots are based on.our general result given in (2.27). 
For weakcoupling, quantum coherence manifests itself in two narrow peaks. For strong 
coupling, the two lines collapse into a single 'motionally narrowed' line centred at 
w = 0. 

In a real experiment the quantity which can be manipulated is lhe temperature; so 
we also look at the NMR lineshapes for various temperatures and constant coupling 
strength (figure 2). Again we see that the two peaks at low temperatures collapse into a 
single peak as the temperature is increased. Thus the study explicitly brings out the 
interplay of quantum and dissipative effects which was one of the motivations behind 
the present work. 

The results obtained by us are valid for a wide range of temperatures and coupling 
strengths. They can, however, be improved for very small values of K at very low 
temperatures. 
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